

Uponor solutions for cooling systems

Uponor Europe East and International International Sales Unit

March 2007

Content

Climate in office buildings	2
Cooling demand	7
Uponor solutions for cooling systems, overview	12
Pipe material	14
SHAC – concrete core activation	24
SHAC – thermally active surfaces	33
SHAC – thermally socket	37
Capillary system	40
Floor cooling	48
Wall cooling	58
Possibilities and limitations	61
Control system	65
Energy efficiency	67
Project Airport Bangkok	73

Most of people are happy at their work,

but there a lot of factors causing dissatisfaction:

Often the cause for dissatisfaction are too high temperatures in summer

If people feel too hot, 70% of them are dissatisfied ...

PMV: Predicted Mean Value PPD: Predicted Percentage of Dissatisfied

Uponor

... which directly influences their labour efficiency

Labour productivity as a function of operative (room) temperature

nach Hasse, Ehrisman, Lehmann, Sazakii und Mackwoth

Recommended room temperatures are:

Table 20 Design values for the operative temperature in office buildings					
Situation	Typical range (°C)	Default value for design (°C)			
Wintertime with heating	θ ₀ = 19 to 24	$\Theta_0 = 21^{-1}$			
Summertime with cooling	θ ₀ = 23 to 26	$\Theta_0 = 26^{-2}$			
 At design conditions for wintertime. Minimum temperature during the day. At design conditions for summertime. Maximum temperature during the day. 					

Except where agreed otherwise, the specified operative temperature shall apply to a location in the centre of the room at a height of 0,6 m above the floor.

EN 13 779

Airing of buildings – Performance requirements for air conditioning units

Cooling demand Factors, influence on cooling demand ⇒ Heat losses through walls and windows	ponor				
Factors, influence on cooling demand ⇒ Heat losses through walls and windows					
\Rightarrow Heat losses through walls and windows	Factors, influence on cooling demand				
_					
⇒ Heat emission of employees: ~ 6W/m (10m ² per person in the office)	2				
$\Rightarrow Heat emission from lightning: 10-12 W (400-500 lux)$	/m²				
⇒ Heat emission from electrical equipment: ~ 18 W/ (medium technical level, 10m ² per person in the office)	/m²				
⇒ solar irradiation: up to 3 W/m ²	130				

Cooling demand

Heating and cooling demand in office buildings (ADAM)

Cooling demand

Most office buildings do not have a heating, but a cooling problem

Cooling demand

Some areas have to be cooled more...

Uponor Cooling Solutions Cooling demand

Do you know the room planning of the future for...

> single offices?

> open-plan offices?

> conference rooms?

> open-plan offices with meeting room?

> single offices with public area?

> others?

It's better to have additional connections available for further cooling equipment

Solutions

You can solve cooling problems this way....

Solutions

... or use Uponor solutions for cooling systems:

Slab Heating and Cooling	Ceiling Cooling	Wall Cooling	Floor Cooling
Concrete core activation Thermally active surfaces	Capillary system	Capillary system Uponor panel 2	Uponor classic Uponor panel 1 Uponor panel 3 Capillary System
Basic cooling load Maximum energy efficiency Fast reaction surface	Maximum cooling output Fast reaction surface Ideal for renovation	High cooling output Fast reaction surface Ideal for renovation	Low cooling output Ideal for floor tempering As double system with UFH

Pipe material

Uponor offers highest pipe quality, made from different materials and completed with fittings tested for connections to manifolds, supply lines etc.

Approvals from 80 national and international institutes like

- ABS Europe Ltd.
- CSTB
- DIN CERTCO
- DVGW
- KIWA N.V.

Constant product quality as per ISO 9001 and 14001

Pipe material

MLC - material characteristics

Pipe material PE-RT according to German DIN 16833

Pipe material

MLC - advantages

- No incrustation
- Corrosion resistant
- Low thermally expansion
- Absolutely oxygen diffusion t
- Low weight
- High form stability
- Bending flexibility

Excellent long run behaviour

Pipe material

MLC pipes for:

Slab Cooling

Wall cooling

Floor cooling

Uponor Cooling Solutions Pipe material

PE-Xa - material characteristics

Standard pipe structure.

Cross-linked pipe structure.

Cross linked Polyethene PE-Xa

Uponor

Continuously ongoing longterm test run for more than 30 years

Uponor Cooling Solutions Pipe material

PE-Xa - material characteristics

No incrustation

Corrosion and abrasion resistant

High chemical resistance

Oxygen diffusion tight

Thermal memory effect

Bending flexibility

Low weight

High crack resistant at low temperatures

Excellent long-run behaviour

Pipe material

PE-Xa pipes for:

Slab cooling

Wall cooling

Floor cooling

Pipe material:

Pipe material

Pipe dimension:4,3Max operating temperature60

Uponor Cooling Solutions

Max. operating pressure

PP-R, type 3

Original height "only" 6 mm

Capillary system – material characteristics

Note:

The pipe material is not oxygen diffusion-tight!

The capillary system is to be installed with a heat exchanger only

Pipe material

Capillary system – advantages

Large active pipe surface

 \Rightarrow maximum cooling output

Surface temperature close to medium temperature

⇒ Fast reaction on cooling demand

Minimum height

 \Rightarrow Ideal for renovation

Pipe material

Capillary system for:

Ceiling cooling

Wall cooling

Capillary system can also be used for floor cooling

υροποι

uponor

SHAC - concrete core activation

Basics

Pipes are integrated in the slabs, usable for different kinds of slab constructions

\Rightarrow largely maintenance free

The thermal mass of concrete slabs absorbs cold air during night-time and utilises it during heat loads at daytime

⇒ Enables thermally comfortable room temperatures

Reduces the air change rate required for hygienic reasons

⇒ air conditioning system can be designed for room air quality only

Minimum difference for supply/return temperature

⇒ renewable energy sources can be used

SHAC - concrete core activation

Basics

Uponor Cooling Solutions Uponor **SHAC - concrete core activation Cooling output, medium temperatures** 0 0 0 0 0 0 0 0 0 0 0 0 00 $t_{supply} = 16^{\circ}C$ t_{return} = 19°C $q_K \approx 40 W/m^2$ $t_{room} = 26^{\circ}C$ 26°C Pipe Uponor PE-Xa 25 x 2,3 Spacing 150 mm q_K≈ 5 ... 20 **Cooling output depends** on ceiling construction W/m^2

Uponor Cooling Solutions SHAC - core concrete activation

Installation of pre-fabricated modules

Uponor SHAC modules are prefabricated according to drawings ...

υροποι

SHAC - concrete core activation

Installation of pre-fabricated modules

... delivered in time to the building site and installed according to building plan

Uponor Cooling Solutions SHAC - concrete core activation Installation of pre-manufactured elements

 simple and timesaving installation during slab construction

- good logistic and coordination between the required trades
- higher preparation costs

Uponor Cooling Solutions SHAC - concrete core activation

Onsite manufacturing of modules

Uponor SHAC modules can also be fabricated onsite, by fixing the Uponor PE-Xa pipe with plastic cable ties on steel meshes

Uponor Cooling Solutions SHAC - concrete core activation

Onsite manufacturing of modules

• efficient if there are many standard elements

Uponor

• operative reaction on building process

Uponor

SHAC - concrete core activation

Installation from the coil

- installation direct from the coil on the slab steel meshes
- no preparation costs
- monitoring required!

Uponor Cooling Solutions SHAC – thermally active surfaces

Fast reaction and peak load covered

Especially edging zones need faster response on external factors like solar irradiation and higher cooling output for peak load compensation.

Uponor contec ON modules are pipe registers installed close to the surface with high cooling output and low reaction time.

Uponor Cooling Solutions SHAC – thermally active surfaces

Manufacturing and installation

Uponor contec modules can be prefabricated industrially and are easy to install

SHAC – thermally active surfaces

Combination with concrete core activation

The best performance can be reached by combining

-concrete core activation for basic loads

and

- thermally active surfaces for covering peak loads

Cooling demand

Do you know the room planning of the future for...

> single offices?

> open-plan offices?

> conference rooms?

> open-plan offices with meeting room?

> single offices with public area?

> others?

With the thermal socket Uponor TS you are on the safe side and have a perfect solution for additional connections for further cooling equipment.

SHAC – thermal socket Uponor TS

Uponor TS included in cooling system layout

Uponor Cooling Solutions SHAC – thermal socket Uponor TS

Different kinds of connections for cooling elements for the future

Uponor

Capillary system

Minimum pipe diameter – maximum active surface

"Classic" System UPONOR slim Capillar System

Uponor

Capillary system

Components

υροποι

Capillary system

Installation

For wet and dry ceiling constructions ...

Capillary system

Installation

... walls and roof slopes ...

Capillary system

Installation

and floor cooling.

Uponor

Capillary system

Oxygen diffusion

Uponor capillary pipes made from PP-R are not diffusion tight.

The cooling system is to be connected to other components (e.g. chillers) with a heat exchanger.

Uponor

Capillary system

Fast reaction system

start

1 minute

Extremely short reaction time due to high active pipe surface and thin covering of the capillary mats

Capillary system

Cooling output

υροποι

Floor cooling

Overview systems

Uponor Cooling Solutions Floor cooling

Uponor screed system with steel mesh, components

Diffusion tight Uponor pipes fixed on reinforcement meshes - easy to install and adapt to layout

Floor cooling

Uponor screed system with steel mesh, installation

- Load distribution layer (Typically screed min 65mm)
 PE-Xa S Fixing clip Anti-corrosive mesh
 Insulation Separation Film

Floor cooling

Uponor panel type 1, components

Diffusion tight Uponor pipes dimension 14 - 17 mm fixed on special foil elements, pipes are damage-protected

Uponor

Floor cooling

Uponor panel type 1, installation

1-screed2-panel type 13-edging stripe4- Uponor pipe

Uponor

Floor cooling

Uponor panel type 3, components

Small diffusion-tight Uponor PE-Xa pipes 9.9 x 1.1 mm fixed on special foil elements

Can be installed on "old" floor screed, ideal for renovation

Uponor

Floor cooling

Uponor panel type 3, installation

uponor

Floor cooling

Cooling output

Floor covering and pipe spacing has a direct influence on cooling output

Pipe PE-Xa 20 x2.3 T_{supply} =16°C T_{return} =19°C T_{room} =26°C Pipe covering 45mm screed

Floor cooling

Cooling output

Uponor Cooling Solutions Floor cooling

uponor

Floor cooling can be effectively used to compensate solar irradiation in combination with air conditioning systems for hygienic and dehumidification reasons

Heat load by direkt sunshine on the tiles up to 130 W/m²

Wall cooling

Uponor panel type 2, components

Diffusion tight Uponor pipes dimension 14 mm with special insulation and heat emission plates

Uponor Cooling Solutions Wall cooling

Uponor panel type 2, installation

υροποι

Wall cooling

Cooling output

Possibilities and limitations

Cooling output different solutions

uponor

Possibilities and limitations

Dew point

condensation temperatur in °C (dew point)

		Relative humidity in %											
		35	40	45	50	55	60	65	70	75	80	85	90
oom temperatur in °C	20	9	9	9	10	11	12	13	14	15	16	17	18
	21	9	9	3	10	12	13	14	15	16	17	18	19
	22	9	9	10	11	12	13	14	15	17	18	19	20
	23	9	9	10	11	12	14	15	17	18	19	20	21
	24	9	10	11	12	13	15	17	18	19	20	21	22
	25	9	10	12	13	14	16	18	19	20	21	22	23
	26	9	10	12	14	16	18	19	20	21	22	23	24
	27	10	12	14	15	17	19	20	21	22	23	24	25
	28	10	12	14	16	18	20	21	22	23	24	25	25
	29	11	13	15	18	19	20	22	23	24	25	25	25
Ľ.	30	12	14	17	19	20	21	23	24	25	25	25	25

The minimum supply temperature must not be less than the dew point temperature for design relative humidity!

Uponor Cooling Solutions Possibilities and limitations Air conditioning Best cooling output at max Q_{cooling} maximum difference between cooling surface and room temperature requires minimum medium min t_{supply} temperature in pipe system, this means low dew point min t_{cond}. temperature. Only possible with low room **min** φ

humidity (normally 50-60%)

Uponor

Air condition

Uponor cooling solutions are not air-conditioning systems and can not be used for controlling humidity in buildings,

but

the air change rate in rooms can be reduced to minimum value required for hygienic reasons,

this

reduces costs for air conditioning channels, equipment and maintenance.

Uponor

Control system

Control system for zone control by reference room

Control system

Control system for individual room control

Energy efficiency

Basics

Relative high medium temperature and minimum temperature difference between supply and return allows the use of regenerative energy sources like ground water or soil energy

Energy efficiency

Heat pumps

Energy efficiency

Heat pumps –electrical power for pump required only

Uponor Cooling Solutions Energy efficiency

Basics

Components for thermal utilisation of the ground

Uponor

Uponor

Energy efficiency

Earth collectors

Uponor PE-Xa pipes prior to installation

Laying and connecting of a ground cooling system below the foundation
Uponor Cooling Solutions

Cost efficiency

Investments, operation & maintenance costs

- smaller air conditioning units and channels (reduced air change rate on minimum value required for hygienic reasons)
- lower construction costs due to reduced ceiling heights
- lower running costs for pumps and air conditioning equipment
- higher efficiency of the air conditioning equipment due to higher cold water temperature
- using air conditioning equipment in off-peak time for cooling load of slabs
- utilisation of renewable energy sources
- maintenance free system

and

> more comfortable room climate

Uponor Cooling Solutions Project Airport Bangkok The project

500.000 m² terminal area (440 x 110 m), the largest terminal in the world

Uponor

Length of the concourses to the gates~3.5 km

Uponor Cooling Solutions

Uponor

Project Airport Bangkok

The task

➔ To reach a room temperature of 24°C and a relative air humidity of 50-60% for 24h/day

nder the conditions of

an outdoor temperature of up to 34°C

High outdoor relative humidity

Solar irradiation up to 1000 W/m²

The solution

Combined system of

- floor cooling to compensate solar irradiation and to keep the floor surface temperature comfortable
- air conditioning system with variable flow rate for dehumidification and air exchange

together with special architectural and construction material solutions

nbouol

Uponor

The solution

150.000m² floor area (approx. 20 pitches) cooled with Uponor system to compensate solar irradiation and keep the floor temperature constant

tsupply 13°C

treturn 19°C

cooling output 70-80 W/m²

The solution

The air displacement system with a fresh air temperature of 18°C assures a relative air humidity of 55-60%

Air exchange rate is reduced to minimum value required for hygienic reasons

1.8 m high air diffuser

03/2007

Uponor

Dew point control

The manifolds for the Uponor UFC system are installed in the air diffusers, which allows for lower supply temperatures

(dew point temperature for 18°C and 55-60% relative humidity is 10°C, cooling water supply temperature is 13°C)

Uponor

The result

Air conditioning is limited to a layer of 2.5m over floor surface

Under the roof the inside temperature is close to the outside temperature which reduces thermal transmission to minimum

The floor cooling system assures steady temperature layers in the building

The result

Only the combination of air conditioning with floor cooling assures steady temperature layers in the building.

Without floor cooling the surface temperature would be > 30°C and the air conditioning system would have to be scaled much larger.

Uponor

υροποι

